1. Introduction

LA

Hbase® HDEFSO| A ®lolg AA A7k 8] L

A ge HAAD A PR

Comparison the query time of searching data
on HBase and HDFS.

Sinh Ngoc Nguyen, Van-Quyet Nguyen, Kyungbaek Kim
Dept of Electronics and Computer Engineering,
Chonnam National University
e-mail : sinhngoc.nguyen@gmail.com, quyetict@utehy.edu.vn, kyungbaekkim@jnu.ac.kr

[=) OoF
I =

Nowadays, handling data efficiently plays a significant role in big data related companies.
Because of data explosion, we need to have advanced efficient solutions in searching data,
processing data, and obtaining statistics of data. Currently, Hadoop and Spark are the leading
frameworks in big data processing. In the aspects of storage, there are several frameworks
providing big data distributed storage such as HDFS and HBase. But, each of them gives the
different performance in handling particular data under different situation. In this paper, we
compare the performance of searching query in agricultural big data which stored on HDFS and
HBase in aspects of sequential searching and random searching. To compare the data searching
performance, we compute the summation of area of selective farms, which obtained by a
searching query. Through the implementation based evaluations, we observed that the time for
querying data stored in HDFS is shorter than HBase in the case of sequential searching. In
contrast, we found that random searching with HBase gives better performance than HDFS. We
found the main reason of this performance difference as the mechanisms provided by HBase such
as the column-family data handling mechanism and low latency access row mechanism. These
mechanisms focus on the row or column which we want to access in random, and it reduces the
volume of data in memory for reading, then Hbase achieves shorter query time in random
searching.

at AMPLab. It provides an application programming

The data explosion has overwhelmed several systems
of companies with huge of data volumes and analytics.
With the daily growing of data, it creates a fast
increase of demand in storage, statistic and processing.
It has an importance how to access quickly of
information in big data. To archive this purposes, we
need to have an advance solution for searching and
querying in big data.

At the current, Hadoop [1] and Spark [2] are the
leading frameworks in big data processing. Hadoop
provides MapReduce model to process huge amounts of
data in parallel. After each phase of processing, it
spends more time to read and write data to hard disk,
so that is the limitation of Hadoop. In the other, Spark
is a novel framework to resolve above problem. That is
an open source cluster computing framework developed

ISSN 2287-4348 St=ADLEDICIONS R & St=A XA SR 20168 = A

interface called RDD with in—-memory processing. So
that Spark is better than Hadoop in iterative data
processing.

Also, data storage plays an important role in big
data system. That is the restricted of Relational
Database Management System to store Bid Data.
Currently, Hadoop provides Hadoop Distributed Files
System (HDFS) [4] for big data storage. It enables
scalable and reliable data storage, and it was designed
to span large clusters of commodity servers. The other
of storage framework is Hbase [5]. That is a data
model designed to provide quick random access to huge
amounts of structured data. It is built on the top
Apache Hadoop and become an increasingly popular
database choice for applications that need fast random
access to large amounts of data

o
T
Q
fon

=2y 101 Page

In this paper, we compare the performance of
searching query on dataset, which stored on HBase and
HDFS. And using Spark RDD [6] to compute the total
land of a farm after having the result of above
searching. We made two experiments to show the
of

searching. The first is calculating the total acreage of a

performance random searching and sequential
farm given by Farm_ID, and the second is calculating

total acreage of all farm in dataset.

2. Background
A. Hadoop Distributed Files System

Hadoop Distributed Files System is a distributed file
system to store large amount of data. It designed to
overcome large cluster of commodity servers, provide
the scale, and reliable data storage. It is fault-tolerant,
distributed storage system that works closely with a
wide variety of concurrent data access applications. In
Hadoop system, HDFS coordinated by YARN [7] to
enables the combined storage use for computation across

many Servers.

Column
Row Family
ID
[] I AREA [PRODUCT
[\ .| F14 F25
001 | 1000000002 | 4579025026 | ... | 436 B
002 | 1000000002 | 4579025026 | ... | 787 B
003 | 1000000002 | 4579025026 | ... | 231 B
004 | 1000000002 | 4579025026 | ... | 162 B
005 | 1000000002 | 4579025026 | ... | 646 B
006 | 1000000002 | 4579025026 |... | 902 | ... =
007 | 1000000003 | 4579035021 |... | 2879 ... =
008 | 1000000003 | 4579035022 |... |1440| ... H
Figure 1 Data organized in HBase
B. HBase

As we know, Hadoop provide distributed file system
for storing large volume of data. It is access only data
in a sequential manner. It mean that searching data
must run on entire data even for simple of job. So it is
not good in case of random access. HBase is a new
solution to access any point of data in a single unit of
time. HBase is a data model provides quick random
access to huge amount of structured data in distributed
system. It is also an open source project built on top of
Hadoop.

HBase provides column-oriented and row-oriented
mechanism. So it manages data through Column-Family
and Row_ID. Each Column-Family includes sub-column
as the column in SQL database. Row_ID is an identity

=

ISSN 2287-4348

SETHNE S 20169 =H

of each row. It looks like the index in SQL, used for
random data access.

C. Spark

Spark is a leading framework in big data processing.
It is an open source and build around speed, easy to
use, and sophisticated analytics which provided by
AMPLab. Hadoop is restricted by execution time, it need
to read and write data from memory into disk after

each phase. So Spark provides resilient distributed
dataset (RDD) with in-memory processing to reduce the
time of saving data. RDD is a data structure which
provide data in distributed over cluster of machine. RDD
facilities the implementation of iterative algorithm that
loop, and

visits their dataset multiple times in a

interactive data analysis.

3. Performance Evaluation

In this work, we made the experiment to compare
the query time of searching data which stored on HDFS
and the other stored on HBase. In order to search data
which stored on HDFS, we need to read sequentially
and get line by line for searching. With data store on
HBase, that is a random searching case. We focus on
the row to get data provide by RowlID.

A. Datasets.

The dataset includes information as show in agriculture
which collected by Korea Government in 2015 named
in Figure 2. The dataset

Nongjak.csv, which shows

describe information in farm such as the acreage of
fields in farm, how many kind of agricultural product in
farm, information about farmer, and so on. The size of
dataset around 2GB. It has more than 11 million of

records, with 34 fields.

V1 F2 .| F14 [..| F25
11000000002 4579025026 ... 436 .. H
11000000002 4579025026 ... 787 t
11000000002 4579025026 ... 231 t
11000000002/ 4579025026 ... 162 H
11000000002 4579025026 ... 646 t
11000000002 4579025026 ... 902 E
11000000003 4579035021 ...| 2879 2
11000000003 4579035022 ... 1440 £

Figure 2 : Nongjak Dataset

We just explain several fields related to our experiment
as below:

V1 - that uses to identify farms.

I
b

102 Page

F2 - the addresses code of farms.

F14 - This field describes the acreage of each field in
farm.

F25 - in a farm, there are several kinds of agricultural

product such as rice, bean, potato, and so on. This field
indicate the kind of plan in the farm.

B. Implement searching query

Methed 1: Read raw data on HDFS and calculate total acreage
of land.

Requiire: ID Farm is the ID of farm we want to search and
calculate the total acreage. VI is column includes /D Farm in
Nongjak.csv. F14 is column includes the acreage of each field in
farm.

1: /*Read data from Nongjak.csv*/
2: dataset = ctx textFile(Nongjak.csv);
3: /*Filter to get record given at Farm_ID*/
4: filter data = dataset.filter(){
S: return (dataset.split(",")[V1].contains(/D_Farm)
6:)
7: /*Use Maper to split data to (kev,value)*/
8: maper data =filter data.mapToPair{
9: return new Tuple<key, value>(V1, F14),
10 };
11: /*Use Reducer to group value with the same key*/
12: result =maper_data.reduceByKey(){
13: return new Tuple2<Float>(F14i+F14j),
14: };
15: /*Save result to HDFS*/
16: result.saveAsHadoopFile();
In this paper, we compare the query time of

searching and calculating the total acreage of a farm
from dataset which stored on HBase and HDFS.

First case, dataset is stored as raw data on HDFS.
We read file Nongjak.csv on HDFS into memory using
Map/Reduce,
key/value pair that are ID and acreage of a farm. In the

then process line by line to get the

Reducer task, each key we can calculate the total
acreage of a farm. We can illustrate the flow of
calculation at Method 1.

In the second case, dataset stored in HBase model.
HBase provides with

column-oriented and row-oriented mechanism. Instead of

reading mechanism
reading all dataset, it focuses on the column or row
which wants to read. HBase organize data in columns
family. Each family column includes columns in dataset.
So it does not need to read all data into memory that
read the row or column which is needed for processing.
After having the result at above reading step, we use
map and reduce in Spark to calculate the acreage of
farm which summary as Method 2.

a2

ISSN 2287-4348

e
=

A HeHsrel 20168 &= =

Method 2: Read data stored on HBase table and calculate total acreage of
land

Reqmire: [D Farm is the ID of farm we want to search and calculate the
total acreage. ID is column family in HBase includes ¥1, which is contain
ID Farm. AREA is column family in HBase include FI+4 which contains
the acreage of each field in farm.

1: /*Get Row ID from ID Farm*/
2: RowlIDs = getfRowID(ID_Farm);
3: /*Initiate a HBase table*/
4: HBtable = new HTable(config, "nongjak"),
5: /*Read rows depend on RowID*/
6: List<Siring>HBdata = new ArrayList<String>(),
7: foreach (row in RowIDs[]) {
8: id farm = getValue(Bytes.toBytes("ID"), Bytes.toBytes("V1"));
9: acreage = getValue(Bytes.toBytes("AREA"), Bytes.toBytes("F14"));
10: HBdata.add (id_farm, acreage);
11: }
12: maper_data = HBdata.mapToPair {
13: return new Tuple<key, value=(V1, F14),
14:)}
15: result = maper_data.reduceByKey() {
16: return new Tuple2<Float>(F14i+FI4));
17:)}
18: result.saveAsHadoopFile()
C. Result
40
35
=
§ 30
&5
@
£20
hl Spark + HDFS
S 15
E @ Spark + Hbase
E 10

1024 1536 2048
Size of dataset (MB)

512

Figure 3 : Random Case Performance Evaluation

In the Method 1, we read data from Nongjak.csv file
stored on HDFS and process to calculate the total of
acreage given by a ID_Farm. In order to do that, we
must read all row of dataset and check the matching of
ID_Farm to get the needed data. So it spends much
time for reading step. In another case, we use HBase
API

column-oriented

to read data stored on HBase. It provides

and row-oriented mechanism for

reading. So it just focuses on the row given by
RowlD. It does not to read all data

memory as Method 1 had do. Figure 3 shows the graph

in table into
of duration time for reading and calculate the acreage
given by ID_Farm. Using Spark and HBase is faster
than Spark and HDFSin case of random reading data.

In the other experiment, we calculate the total land
of each farm in dataset. In this case, we need to read
all dataset for calculation. So storing data in HDFS
have a better result than HBase in case of sequential
searching. Figure 4 shows the result of sequential case

103 Page

I
b

of searching. [6] Vavilapalli Vinod Kumar, et al. ”"Apache hadoop
yvarn: Yet another resource negotiator.” Proceedings
200 of the 4th annual Symposium on Cloud Computing.

180 ACM, 2013

— 160
2

8 140
o

£ 120
E 100
30
60
40
20

Spark + HDFS

B Spark + Hbase

Execution time

512 1024 1536 2048
Size of dataset (MB)

Figure 4: Random Case Performance Evaluation

3. Conclusion

In this paper, we evaluate the performance of
accessing data which stored in HDFS and HBase in
case of sequential accessing and random accessing. Data
stored in HDFS provides the sequential accessing better
than HBase. In contrast, random accessing on HBase is
better than HDFS. So it depend on the purpose of user
to design database and select the appropriate storage
system to get the best performance.

Acknowledgements

This work was supported by the National Research
Foundation of Korea Grant funded by the Kkorean
Government(NRF-2014R1A1A1007734). This research
was supported by the MSIP(Ministry of Science, ICT
and Future Planning), Korea, under the
ITRC(Information Technology Research Center) support
program (IITP-2016-R2718-16-0011) supervised by the
ITP(Institute for Information & communications
Technology Promotion).

References

[1] Hadoop, Apache. "Apache Hadoop.” URL
http://hadoop. apache. org (2011).

[2] Spark, Apache. "Apache Spark Home Page, retrieved
from internet on 23 September 2014.” (2014)

[3] Karun, A. Kala, and K. Chitharanjan. "A review on
hadoop—HDFS infrastructure extensions.”
Information & Communication Technologies (ICT),
2013 IEEE Conference on. IEEE, 2013.

[4] Vora, Mehul Nalin. "Hadoop-HBase for large-scale
data.” Computer science and network technology
(ICCSNT), 2011 international conference on. Vol. 1.
IEEE, 2011.

[5] Zaharia, Matei, et al. "Spark: cluster computing with
working sets.” HotCloud 10 (2010): 10-10.

ISSN 2287-4348 St=ADLEDICIONS R & St=A XA SR 20168 = A

o
T
Q
jll

=2y 104 Page

